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Introduction to causal inference

What is causal inference?

● Causal inference formalizes the assumptions needed to conclude that
treatment A causes outcome Y and not just that A and Y are
associated

● Methods in causal inference are often used to draw causal conclusions
from observational datasets

● Examples of observational data:
● Electronic health records
● Insurance claims database
● Customer purchasing database
● Data from prospective studies where a treatment/exposure is not

randomized

● The quantity of interest in many causal studies is called the
treatment effect or causal effect
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Introduction to causal inference

Randomized controlled trials

● Randomized controlled trials (RCT’s) are experiments in which a
treatment is randomized to patients

● Large and well-designed RCT’s are often considered the “gold
standard” for establishing causation between a treatment and
outcome

● A key goal of randomization is to achieve covariate balance between
groups
● Covariate balance occurs when the distributions of other patient

characteristics (sex, age, race, comorbidities, etc.) are similar between
groups

● An average treatment effect can be isolated if important covariates are
balanced between groups

● However, RCT’s are not always feasible
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Introduction to causal inference

Observational studies

● In observational studies, we often do not have covariate balance

● For example, say we are trying to use Electronic Health Records to
provide preliminary evidence on whether an experimental therapy
might be effective in treating patients with cancer

● The experimental therapy has not yet received FDA approval and is
being used on a compassionate use basis

● Discussion questions:
● What factors might influence who receives the experimental therapy?
● Does every patient who is hospitalized with the condition have a

positive probability of receiving this therapy?

● A series of causal assumptions (discussed in Hernán and Robins) can
be used to conceptualize an observational study in an RCT framework
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Introduction to causal inference

Confounding variables

● Causal diagrams are used to visualize causal relationships between
variables in an analysis

● In the causal diagram below, C is a confounding variable, since it is
a common cause of both the treatment, A, and the outcome, Y

● Not accounting for C would allow us to draw the conclusion that A
and Y are associated but not that A causes Y

● By accounting for C in our analysis, we can estimate the effect of A
on Y (if there is one) that is not due to common cause C
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Potential outcomes framework

Potential outcomes framework

● Let Y denote a subject’s observed outcome. We will assume that Y is
continuous

● The subject either received treatment level A = 1 or A = 0, but we
only observed one of these situations and the corresponding outcome

● In order to estimate a treatment effect, we need to know what the
subject’s outcome would have been under each level of treatment

Potential outcomes (or counterfactuals)

A = 0 Y0
The outcome a subject would have had if they had
taken treatment 0

A = 1 Y1
The outcome a subject would have had if they had
taken treatment 1

● Y = ZY1 + (1 −Z)Y0 where Z = 1 if the subject received treatment 1
and Z = 0 if the subject received treatment 0
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Potential outcomes framework

Treatment Effects

● Using the counterfactual framework, a subject’s treatment effect is
defined as Y1 − Y0

● Often, we cannot determine an individual treatment effect

● Much of causal inference is focused on estimating the average
treatment effect or average causal effect in a population:

E(Y1 − Y0)

● Stable unit treatment value assumption (SUTVA):
● Part 1: There cannot be multiple versions of the treatment
● Part 2: There cannot be treatment interference (i.e. the treatment of

one subject cannot affect the potential outcome of another subject)
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Mediation analysis

Mediation analysis: understanding “how”

● Mediation analysis aims to address an underlying causal mechanism

● It is likely already established that A causes Y, but we would like to
know how and why that is

● Does A cause a change in intermediate outcome M (mediator), which
in turn causes Y?

● How much of the total effect of A on Y occurs through M?
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Mediation analysis

Motivating example

● In a study of persons with a substance-use disorder, we would like to
determine whether a rehabilitation program with methadone
treatment (A) results in increased work activity (Y)

● It is of interest to determine whether some of this effect is mediated
through level of illicit drug use (M)

● This example is described in Chapter 2 of VanderWeele’s mediation
textbook
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Mediation analysis

Potential outcomes framework in mediation analysis

● Y1 and Y0 denote the counterfactual outcomes for a subject when
taking treatment 1 and treatment 0, respectively

● In a mediation analysis, we also define counterfactual outcomes for
the mediator variable

Potential outcomes

A = 0 M0
The mediator value a subject would have had if they had
taken treatment 0

A = 1 M1
The mediator value a subject would have had if they had
taken treatment 1

● Ya,Ma denotes the counterfactual outcome when the subject’s
treatment is fixed at level A = a and the subject’s mediator value is
the value that would have occurred if they had taken treatment A = a

● We will assume that M is a continuous mediator
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Mediation analysis

Causation vs. association in mediation

● Let C represent a collection of confounding variables
● In our motivating example, A = rehab + methadone, M = level of

illicit drug use, Y = amount of work activity
● What variables might confound the relationship between A and M, M

and Y, or A and Y?
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Mediation analysis

Causal quantities of interest

● Average total effect (TE): The average difference in outcome
(treatment effect) when the treatment is set to 1 vs. 0

E(Y1 − Y0 ∣ c) = E(Y1,M1 − Y0,M0 ∣ c)

● Average natural direct effect (NDE): The average difference in
outcome when the treatment is set to 1 vs. 0 and the mediator value
is set to what it would have been under treatment 0

E(Y1,M0 − Y0,M0 ∣ c)

● Average natural indirect effect (NIE): The average difference in
outcome when the treatment is set to 1 and the mediator value
changes from what it would have been under treatment 0 to what it
would have been under treatment 1

E(Y1,M1 − Y1,M0 ∣ c)
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Mediation analysis

Causal assumptions in mediation analysis

● Assumption 1: Conditional on C, there is no unmeasured confounding
between the outcome and the treatment

Ya,m ⊥ A ∣ C

● Assumption 2: Conditional on A and C, there is no unmeasured
confounding between the outcome and the mediator

Ya,m ⊥M ∣ {A,C}
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Mediation analysis

Causal assumptions in mediation analysis (continued)

● Assumption 3: Conditional of C, there is no unmeasured confounding
between the mediator and the treatment

Ma ⊥ A ∣ C
● Assumption 4: Conditional on C, A does not cause an effect L that

in turn affects both M and Y

Ya,m ⊥Ma∗ ∣ C
● SUTVA assumption mentioned earlier also applies
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Mediation analysis

Regression-based approach for mediation analysis

● We can use multiple linear regression models to model the
relationships in the causal diagram

● Regress Y on a, m, and c to obtain an estimate of

E(Y ∣ a,m, c) = θ0 + θ1a + θ2m + θ3am + θ′4c
● Regress M on a and c to obtain an estimate of

E(M ∣ a, c) = β0 + β1a + β′2c
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Mediation analysis

Estimating the average causal quantities

NDE = ∫
∞

−∞

E(Y ∣ A = 1,M =m,C = c)f(m ∣ A = 0,C = c)dm

− ∫
∞

−∞

E(Y ∣ A = 0,M =m,C = c)f(m ∣ A = 0,C = c)dm

= θ1 + θ3β0 + θ3β′2c

NIE = ∫
∞

−∞

E(Y ∣ A = 1,M =m,C = c)f(m ∣ A = 1,C = c)dm

− ∫
∞

−∞

E(Y ∣ A = 1,M =m,C = c)f(m ∣ A = 0,C = c)dm

= β1(θ2 + θ3)

E(Y ∣ a,m, c) = θ0 + θ1a + θ2m + θ3am + θ′4c
E(M ∣ a, c) = β0 + β1a + β′2c
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Mediation analysis

Causal interpretation of effects

● Use of the regression models and the aforementioned causal
assumptions collectively, allow for direct, indirect, and total effects to
be estimated with a causal interpretation

● Interpret with caution as these assumptions will never be fully met in
practice

● Several of these causal assumptions can be tested using sensitivity
analysis methods
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Mediation analysis

How much of the total effect was mediated by M?

● Proportion mediated (PM) is one metric used to assess the amount of
mediation

● Recall that the total effect is TE = NDE +NIE
● PM = NIE

TE
● This metric has some limitations

● It can have a wide confidence interval
● If the direct and indirect effect have different signs, PM can exceed

100%
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Mediation analysis

Frequentist vs. Bayesian paradigm

● Frequentist approach:
● Estimates of the TE, NIE, NDE, and PM can be obtained by plugging

in the estimated regression coefficients
● Bootstrapping is often the easiest way to obtain confidence intervals

for these quantities in the frequentist setting

● Bayesian approach:
● Run the Bayesian version of each linear regression model

● Prior distributions must be specified on each parameter

● Obtain posterior samples of the TE, NIE, NDE, and PM
● Use the posterior mean as the estimate and obtain 95% credible

intervals using the sample values corresponding to the 2.5th and 97.5th
percentile of each quantity
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Examining cancer disparities using mediation analysis

Understanding cancer disparities with mediation analysis

● My dissertation research focuses on assessing patterns in cancer
mortality rates at the county level using Bayesian hierarchical models

● In the Midwest, there are rural/urban differences in age-adjusted
cancer mortality rates

Cancer
Effect of rural vs. urban
on age-adjusted mortality rate

95% credible interval

Colorectal 1.093 (1.064, 1.122)
Lung 1.010 (0.987, 1.034)
All 1.016 (1.002, 1.030)

● We aim to understand which variables mediate the relationship
between rural/urban status and age-adjusted cancer mortality rates
using a Bayesian spatial modeling approach

● Working on this research with Dr. Jake Oleson and Dr. Mary Charlton
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Examining cancer disparities using mediation analysis

Understanding cancer disparities with single mediator
model

● A represents the rurality of a county (A = 1 is rural, A = 0 is urban)

● M represents the miles to the nearest
Commission-on-Cancer-accredited hospital

● Y represents a county’s age-adjusted cancer mortality rate

● We focus on further explaining the association between A and Y
rather than obtaining a causal interpretation
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Examining cancer disparities using mediation analysis

Bayesian hierarchical models

Model 1:

Yik ∼ Poisson(λik)

log(λik) = log(nik) + αk + θ1ai + θ2mi + θ3aimi + γi + εi

● Let i denote the county and k denote the age group

● Yik denotes the number of cancer deaths in the corresponding group
● γi is a spatial random effect for county i (has a conditional

autoregressive prior)
● Accounts for correlated age-adjusted rates between a county and its

neighboring counties

● εi accounts for overdispersion in the Poisson model

● Vague prior distributions are assigned to all other parameters
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Examining cancer disparities using mediation analysis

Bayesian hierarchical models (continued)

Model 2:

Mi ∼ Normal(µi, σ2)

µi = β0 + β1ai

● Vague prior distributions are assigned to all parameters
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Examining cancer disparities using mediation analysis

Some challenges

● Treatment interference in the spatial setting
● SUTVA assumption is violated!
● A neighboring county’s rural or urban status likely influences the

county’s cancer mortality rate
● We therefore have “treatment” interference

● Recent literature suggests ways to redefine potential outcomes when
treatment interference occurs due to spatial or social network
interference (see Forastiere et al)

● Count outcome
● We need to re-derive the direct and indirect effects, as the set of

effects based on the linear model do not hold for count outcomes

● Multiple mediators
● Including additional mediators, especially correlated mediators, requires

new expressions for the direct and indirect effects
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Examining cancer disparities using mediation analysis
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