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Disease mapping

Small area estimation

• Small area estimation (SAE) methods aim to estimate area-specific
parameters for populations in small geographic regions
• To do this, they might incorporate information from nearby regions or

large surveys to produce more stable estimates for the small areas

• Government statistical agencies use SAE techniques to obtain
county-level estimates of measures such as median household income,
smoking rates, and literacy rates

• In this presentation, I will specifically focus on the application of a
new SAE model for disease mapping, but the SAE models presented
can be applied across disciplines
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Disease mapping

Disease mapping

• Disease mapping is an important tool in spatial epidemiology used to assess
patterns in disease incidence or mortality across space and time

• By quantifying disease risk at the county level, health departments can
efficiently allocate resources and promote prevention efforts in the
communities that need them most

Estimates of age-adjusted mortality rates from ischemic heart disease in 2018. Accessed using
the CDC’s National Environmental Public Health Tracking Network data visualization tool.
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Disease mapping

Measures of risk in disease mapping

• Crude rate = # of deaths
population size ∗ 100, 000

• Often highly dependent on the underlying age distribution

• Age-adjusted rate =
∑K

k=1wk ∗ (crude rate for age group k)
• Direct standardization
• Weighted average of age-group-specific crude rates
• wk’s reflect the proportion of individuals in age group k in a selected

standard population
• Each age-group-specific rate is calculated separately and combined into

an age-adjusted rate afterward

• Standardized mortality ratio (SMR) = # of observed deaths
# of expected deaths

• Indirect standardization
• Expected deaths for a county and year are calculated upfront, so there

is only one data point per county and year
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Disease mapping

Why should we model age-adjusted rates?

• For low-prevalence diseases and in counties with small population
sizes, raw mortality rates are subject to considerable variability
• Mapping the raw mortality rates directly might lead researchers to

identify spurious patterns that are present due to variability

• For example, say a county has a population size of 1000 people
• Rate if there were 0 deaths: (0/1000)*100,000 = 0
• Rate if there was 1 death: (1/1000)*100,000 = 100
• Rate if there were 2 deaths: (2/1000)*100,000 = 200

• Disease risk is often spatially and temporally correlated
• We can borrow strength from nearby counties and years within a model

to leverage this spatial and temporal correlation
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Disease mapping

Why should we model age-adjusted rates? (continued)

• In practice, age-adjusted rates are often calculated upfront then
treated as a continuous outcome in a linear regression model. Some
downsides of this approach include:
• It ignores the variability in the rate calculation
• It assigns a sample size of one to each areal unit
• It is not possible to incorporate individual-level data into the analysis

• Bayesian hierarchical modeling approaches can:
• Appropriately account for the variability in the rate calculations
• Leverage the spatial and temporal dependencies in the dataset
• Incorporate individual-level data or regional covariates into the

estimation, if desired
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Disease mapping

Bayesian hierarchical Poisson regression model

• The Bayesian hierarchical Poisson regression model with spatial and
temporal random effects is frequently used in disease mapping settings

Yi,j,k ∼ Poisson(θi,j,k)

log(θi,j,k) = log(ni,j,k) + xT
kβ + γi + δj + εi,j

• Yi,j,k is the number of deaths in county i during year j for age group k

• ni,j,k is the corresponding population size

• xk is a K × 1 vector of age group indicators corresponding to age group k

• γi and δj are spatial and temporal random effects

• εi,j accounts for overdispersion

• In addition to the likelihood, a set of prior distributions must be specified for
the parameters, random effects, and hyperparameters
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Disease mapping

Age-adjusted rates

Age-adjusted rates can be estimated from the Poisson model by:

1 Drawing posterior samples of each θi,j,k

2 Computing each age-group-specific rate for county i during year j as:

Ri,j,k =
θi,j,k
ni,j,k

∗ 100, 000

3 Combining the age-group-specific rates into an age-adjusted rate
using standard population weights:

Ri,j =

K∑
k=1

wk ∗Ri,j,k

4 Computing the posterior mean of each Ri,j to obtain a rate estimate
for each county and year
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Proposed hurdle model

Motivation for the proposed hurdle model

• This work is motivated by the need for reliable estimates of
age-adjusted cancer mortality rates in the Midwest

• Since the Midwest has a particularly large proportion of rural
counties, cancer mortality data sets include many zero counts

• The proportion of zero counts in the data sets are further inflated
when the data are stratified by age group

Cancer
Proportion of zeros before
age group stratification

Proportion of zeros after
age group stratification

Liver 0.41 0.88

Colorectal 0.04 0.63

• The aforementioned Poisson model does not account for excess zeros

• We propose a Bayesian hierarchical hurdle model for estimating
age-adjusted rates in disease mapping settings with excess zeros
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Proposed hurdle model

Likelihood

• To model age-adjusted rates, we specify a hurdle model for the
likelihood
• The hurdle model accounts for excess zeros using a two-stage

approach
• Stage 1: The probability of a non-zero count, πi,j,k, is modeled using

a Bernoulli regression model
• Stage 2: Positive counts are modeled using a zero-truncated Poisson

regression model with parameter θi,j,k

P (Yi,j,k = yi,j,k | πi,j,k, θi,j,k) =


1− πi,j,k, yi,j,k = 0

πi,j,k ∗
θ
yi,j,k
i,j,k exp{−θi,j,k}

yi,j,k!(1−exp{−θi,j,k}) , yi,j,k > 0

where i denotes the county, j denotes the year, and k denotes the age group
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Proposed hurdle model

Stage 1: Bernoulli regression model

g(πi,j,k) = xTkα1 + log(ni,j,k) ∗ xTkα2 + γ1,i + δ1,j

• The function g is left unspecified, since the complementary log-log or
logit link work well, depending on the application

• xk is a K × 1 vector of age group indicators corresponding to age
group k

• γ1,i is a spatial random effect for county i

• δ1,j is a temporal random effect for year j

• Log of the population size is included as a covariate, since there is not
a natural way to incorporate a population offset
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Proposed hurdle model

Stage 2: Zero-truncated Poisson regression model

log(θi,j,k) = log(ni,j,k) + xTkβ + γ2,i + δ2,j + εi,j

• γ2,i is a spatial random effect

• δ2,j is a temporal random effect

• εi,j accounts for uncorrelated heterogeneity
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Proposed hurdle model

Priors

Age group coefficients:

• α and β have diffuse independent normal priors

Random effects:

• γ1 | τγ1 ∼ ICAR(τγ1)

• γ2 | τγ2 ∼ ICAR(τγ2)

• δ1 | ρ1, τδ1 ∼ AR(1) with correlation ρ1 and precision τδ1
• δ2 | ρ2, τδ2 ∼ AR(1) with correlation ρ2 and precision τδ2
• ε | τε ∼ Normal(0, τε ∗ I)

Hyperparameters:

• Correlation parameters ρ1 and ρ2 have Uniform(-1,1) priors

• Standard deviation parameters have Half-Cauchy(10) priors
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Proposed hurdle model

Spatial process

• To allow for spatial smoothing, we apply independent intrinsic
conditional autoregressive (ICAR) priors to the spatial random effects
in each stage of the hurdle model

• The ICAR prior treats the spatial random effects for a county and its
neighbors as correlated

γ1,i | γ1,−i ∼ Normal

(∑
i∼h γ1,h

mi
,miτγ1

)
where mi = number of counties adjacent to county i and i ∼ h
represents adjacency between counties i and h

• To ensure identifiability,
∑I

i=1 γ1,i = 0
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Proposed hurdle model

Temporal process

• To allow for temporal smoothing, we apply independent
autoregressive(1) priors to the temporal random effects in each stage
of the hurdle model

• The AR(1) prior treats the temporal random effects for a given year
and the adjacent years as correlated

δ1,0 ∼ Normal(0, τδ1(1− ρ2
1))

δ1,j = ρ1 ∗ δ1,j−1 + κ1,j for j = 2, . . . , J

where κ1,j ∼ Normal(0, τδ1)
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Proposed hurdle model

Age-adjusted rates

• The age-group-specific rate for county i during year j is calculated by
dividing E(Yi,j,k) by ni,j,k and then multiplying by 100,000
individuals:

Ri,j,k =

(
πi,j,k ∗ θi,j,k

1− exp{−θi,j,k}

/
ni,j,k

)
∗ 100, 000

• Thus, the age-adjusted rate for each county and year is computed as:

Ri,j =

K∑
k=1

wk ∗Ri,j,k

• We obtain 1,000 posterior samples of each πi,j,k and θi,j,k to compute
the posterior mean and variance of each age-adjusted rate
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Model implementation

Model implementation

• This modeling approach can quickly become computationally
expensive with the addition of counties and years
• We use the INLA package in R to run these models

• Approximate Bayesian inference greatly reduces model run time
compared to MCMC methods

Software Runtime (Iowa data)
INLA ∼ 3.5 minutes

OpenBUGS ∼ 12 hours

• Since the posterior distribution can be factored, each stage can be
run in parallel to further reduce run time

Melissa Jay (University of Iowa) Conference on Statistical Practice 2021 February 19, 2021 18 / 39



Model implementation

Hurdle model in INLA - stage 1

y1 <- ifelse(data$deaths > 0, 1, 0)

fit1 <- inla(y1 ~ 0 + mu + age1 + age2 + age3 + age4 +

logpop + age1*logpop + age2*logpop + age3*logpop + age4*logpop +

f(county_id, model = "besag", graph = adj,

hyper = list(prec = list(prior = HC.prior))) +

f(year_id, model = "ar1",

hyper = list(theta1 = list(prior = HC.prior),

theta2 = list(prior = "betacorrelation",

param = c(1,1)))),

data = dat1, family = "binomial",

control.family = list(link = "cloglog"),

control.compute = list(dic = TRUE, waic = TRUE, config = TRUE))

## Function to compute pi from fit1 predictor

fun1 <- function(){
1-exp(-exp(Predictor))

}
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Model implementation

Hurdle model in INLA - stage 2

• The zero-truncated Poisson model is not implemented in INLA

• To run stage 2, we use the zeroinflatedpoisson0 model in INLA
and set θ = −20 so that p ≈ 0
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Model implementation

Hurdle model in INLA - stage 2 (continued)

y2 <- ifelse(data$deaths == 0, NA, data$deaths)

fit2 <- inla(y2 ~ 0 + offset(logpop) + mu + age1 + age2 + age3 + age4 +

f(county_id, model = "besag", graph = adj,

hyper = list(prec = list(prior = HC.prior))) +

f(year_id, model = "ar1",

hyper = list(theta1 = list(prior = HC.prior),

theta2 = list(prior = "betacorrelation",

param = c(1,1)))) +

f(county_year_id, model = "iid",

hyper = list(prec = list(prior = HC.prior))),

data = dat2, family = c("zeroinflated.poisson0"),

control.family = list(list(

hyper = list(prob = list(initial = -20, fixed = TRUE)))),

control.compute = list(dic = TRUE, waic = TRUE, config = TRUE))

## Function to compute theta from fit2 predictor

fun2 <- function(){
exp(Predictor)

}
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Model implementation

Hurdle model in INLA - estimating age-adjusted rates

## Draw 1000 samples of pi from fit1

nSamp <- 1000

set.seed(211)

samp1 <- inla.posterior.sample(nSamp, fit1, seed = 211)

pi_samp <- inla.posterior.sample.eval(fun1, samp1)

## Draw 1000 samples of theta from fit2

set.seed(211)

samp2 <- inla.posterior.sample(nSamp, fit2, seed = 211)

theta_samp <- inla.posterior.sample.eval(fun2, samp2)

## Compute rates

rates <- (pi_samp /(1-exp(-theta_samp)))*theta_samp*100000/data$population

## Obtain mean rate for each county, year, and age group

rates <- rowMeans(rates)

rates <- matrix(rates, ncol = 5, byrow = T)

## Take weighted average using standard population weights

rates <- c(rates %*% weights)
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Analysis of cancer mortality

Application to county-level cancer mortality

• Annual cancer death counts were derived from the National Center
for Health Statistics Vital Statistics data files and age-adjusted using
the 2010 U.S. standard population
• Counties: All counties in Iowa, Minnesota, and Wisconsin (I = 258)
• Years: 2000 - 2017 (J = 18)
• Age groups: < 40, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74,

75-79, 80-84, and 85+ (K = 11)

Cancer
Proportion of
zeroes

Mean of
non-zero counts

Median of
non-zero counts

Pattern over
time

Liver 0.88 1.5 1.0 Increasing

Colorectal 0.63 2.3 1.0 Decreasing

• We fit the hurdle model and Poisson model to each data set
• Model fits are compared based on the Deviance Information Criterion

(DIC) and the Widely Applicable Information Criterion (WAIC)
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Analysis of cancer mortality

Liver cancer
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Analysis of cancer mortality

Liver cancer - comparison of approaches

Cancer Model DIC ∆DIC WAIC ∆WAIC

Liver
Hurdle 35,846

-16
35,853

-17
Poisson 35,861 35,869
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Analysis of cancer mortality

Colorectal cancer
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Analysis of cancer mortality

Colorectal cancer - comparison of approaches

Cancer Model DIC ∆DIC WAIC ∆WAIC

Colorectal
Hurdle 89,007

41
89,013

39
Poisson 88,966 88,975
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Simulation

Simulation study

• Goal: Assess the performance of the hurdle model on simulated data
sets with varying characteristics

• Specifically, we quantify the performance of the hurdle model
compared to the Poisson model when fit to data that are truly
hurdle-generated and under model misspecification (data are truly
Poisson-generated)

• In the simulations, we utilize a simplified version of the proposed
hurdle model (excludes population sizes in stage 1):

logit(πi,j,k) = xTkα+ γ1,i + δ1,j

log(θi,j,k) = log(ni,j,k) + xTkβ + γ2,i + δ2,j + εi,j
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Simulation

Simulation set-up

• Neighborhood structure and population sizes come from 44 counties
in southern Minnesota from 2014-2017

• Individuals are classified into one of the following six age groups:
<40, 40-49, 50-59, 60-69, 70-79, and 80+

• We use a proper CAR model to approximate the ICAR model

• Parameter values are set to be the following:

Parameter Value
All precision terms 100

ργ1 , ργ2 , ργ 0.9

ρδ1 , ρδ2 , ρδ 0.4

• We generate 100 data sets under each scenario
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Simulation

Simulation set-up (hurdle)

• In scenarios 1-9, data sets are generated from hurdle models
• α and β are selected so that the average πk and θk values are the

following:
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Simulation

Simulation set-up (Poisson)

• In scenarios 10-12, data sets are generated from Poisson models with
high, medium, and low count distributions
• β is selected so that the average θk values are the following:
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Simulation

Simulation results (hurdle-generated data)

Scenario θk πk
Proportion zeros
(Mean)

∆DIC
(Mean)

∆DIC
(SD)

Model fitting
problems

1 Low High 0.413 -685 82 0
2 Low Medium 0.587 -657 91 0
3 Low Low 0.831 -487 112 13
4 High High 0.417 -1,093 157 0
5 High Medium 0.591 -1,303 163 0
6 High Low 0.832 -1,184 184 6
7 HM High 0.415 -1,954 287 0
8 HM Medium 0.590 -1,975 313 0
9 HM Low 0.832 -1,540 302 1

• Changing the proportion of zeros had less of an effect on ∆DIC than
changing the non-zero count distribution

• Model-fitting problems occurred when there was no variability in non-zero
count values for at least one age group
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Simulation

Simulation results (Poisson-generated data)

Scenario θk
Proportion zeros
(Mean)

∆DIC
(Mean)

∆DIC
(SD)

Model fitting
problems

10 High 0.440 45 10 0
11 Medium 0.638 42 9 0
12 Low 0.783 34 9 11

• The magnitude of ∆DIC was much smaller in scenarios 10-12 compared to
scenarios 1-9

• This finding suggests that fitting a Poisson model to hurdle-generated data
could have larger consequences than fitting a hurdle model to
Poisson-generated data, in terms of DIC

• Model fitting problems occurred for the low values of θk due to a lack of
variability in non-zero count values for at least one age group
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Conclusions

Conclusions

• The Bayesian hierarchical hurdle model provides an improved fit to
the Poisson model for the liver cancer data set but not for the
colorectal cancer data set
• Ultimately, the choice of a hurdle model or Poisson model is dependent

on both the disease and the geographic region being studied

• Results from the simulation study suggest that the distribution of
non-zero counts may be more influential in the hurdle model fit than
the proportion of zeros in the data set
• The hurdle model is likely to fit best on datasets where there are excess

zeros but also high count values
• In contrast, the Poisson model might adequately estimate a large

proportion of zeros if the other count values are also low
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Conclusions

Strengths and limitations of the proposed hurdle model

• Strengths
• Accounts for excess zeros that occur for low-prevalence diseases and

that occur as part of age group stratification in the modeling process
• Assumes there is one zero-generating process, which often makes sense

if everyone in the population is considered “at-risk”
• In the examples, the hurdle model produced more precise estimates of

age-adjusted rates than the Poisson model

• Limitations
• More computationally expensive than the Poisson model
• More complex model specification
• Not possible to fit this model if there is no variability in the non-zero

count values for a particular age group
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Contact information

Thank you for listening!

• Questions?
• Contact information:

• Email: melissa-jay@uiowa.edu
• Twitter: @MelissaJay
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